In Situ Chemical Reduction at a Former Chrome Plating Facility

Tedd Yargeau, Senior Scientist
California Environmental Protection Agency
Department of Toxic Substances Control

ASTSWMO State Superfund Managers Symposium
July 29, 2008
Scottsdale, AZ
Former Hard Chrome Plating Facility
Site Information and Historical Use

- Plating shop operated from 1943 to 1991
- Operations included electroplating processes, anode fabrication, stripping, neutralizing, glass bead blasting, grinding, buffing and polishing
- 0.25 Acre property
- Structures damaged by a fire in 1991 and were removed in 1994
- Located within a residential/commercial/industrial area of Los Angeles
Monitoring Well Location Map
Chemicals Found

- Chromium
 - Associated with former plating shop operations
 - Found in soil and groundwater (42,400 milligrams per kilogram (mg/kg) in soil and up to 1,750 milligrams per liter (mg/L) in groundwater)
- Hexavalent Chromium
 - Associated with former plating shop operations
 - Found in soil and groundwater (9,800 mg/kg in soil and 1,700 mg/L in groundwater)
- Trichloroethylene (TCE)
 - TCE coming from an offsite source
 - Found in deeper soil and groundwater (2,970 micrograms per liter (µg/L) in groundwater)
Isoconcentration Map of Hexavalent Chromium in the Uppermost Water-Bearing Unit
Remedial Action Objectives

- Minimize or eliminate potential exposure of humans to Cr\(^{+6}\) in surface or shallow soil
- Prevent or control further Cr\(^{+6}\) groundwater plume migration horizontally or vertically to deeper aquifers
- Prevent or control potential exposures to contaminants in deep soil and groundwater using institutional and engineering controls and monitoring
Planned Remedy using Calcium Polysulfide (CPS)

Example of typical reduction/oxidation reaction that occurs with CPS:

\[2 \text{CrO}_4^{2-} + 3 \text{CaS}_5 + 10\text{H}^+ \rightleftharpoons 2 \text{Cr(OH)}_3(\text{s}) + 15 \text{S(}s\text{)} + 3 \text{Ca}^{2+} + 2\text{H}_2\text{O} \]

Where \(\text{CrO}_4^{2-} \) = chromate ion, Cr in hexavalent form

\(\text{CaS}_5 \) = calcium polysulfide

\(\text{Cr(OH)}_3(\text{s}) \) = chromium hydroxide precipitate

\(\text{S(}s\text{)} \) = sulfur precipitate

\(\text{Ca}^{2+} \) = calcium ion
Planned Remedy (Soil)

- Excavation of soil down to approximately 5 feet to remove contaminated soil
- Removal of subsurface features from former plating shop
- Transport offsite to either a treatment/recycling or disposal facility
- Conduct Post Cleanup Confirmation Sampling (Lateral and Vertical)
- Construct gallery wells for delivery of Calcium Polysulfide (CPS) for reduction of hexavalent chromium to trivalent chromium
- Removal area will be backfilled with clean imported soil
- Injection of CPS to soil
Planned Remedy (Groundwater)

- Calcium Polysulfide (CPS) vadose zone infiltration (12 onsite injection wells planned)
- CPS injection in groundwater source area and downgradient barrier (8 offsite wells planned)
- Institutional controls (i.e. deed restriction)
- Long term monitoring
Site Plan Showing Injection and Monitoring Well Locations for CPS Pilot Test
Calcium Polysulfide Pilot Test
CPS Pilot Test
CPS Pilot Test
SCHEMATIC CROSS-SECTION OF PILOT TEST INJECTION
CPS INJECTION SUMMARY

<table>
<thead>
<tr>
<th>Date</th>
<th>Total Dye Injected (Gal)</th>
<th>Total CPS Injected (Gal)</th>
<th>Total H2O Injected (Gal)</th>
<th>Total Volume Injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>10/15/2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>10/16/2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>10/17/2007</td>
<td>200</td>
<td>300</td>
<td>900</td>
</tr>
<tr>
<td>Thursday</td>
<td>10/18/2007</td>
<td>0</td>
<td>1473</td>
<td>2800</td>
</tr>
<tr>
<td>Friday</td>
<td>10/19/2007</td>
<td>0</td>
<td>0</td>
<td>3830</td>
</tr>
<tr>
<td>Total Volume Injected</td>
<td>200</td>
<td>1773</td>
<td>7530</td>
<td>9,503</td>
</tr>
</tbody>
</table>
CrVI Concentrations Versus Days – Post-Injection
Summary of CPS Pilot Test

- In-situ chemical reduction by CPS is feasible at this site at an injection rate of approximately 15 to 20 gallons per minute
- Radius of reactive influence is at least 16 feet but less than 30 feet
- Reactive influence of CPS at FW-1 and URSW-1 was demonstrated by dramatic decrease of CrVI concentrations in groundwater from 200 mg/L and 910 mg/L, respectively, to non-detect levels
Infiltration Gallery As-Built Layout

See figure 3-5

EXPLANATION:
- Groundwater Well
- Former Buildings/Structures
- Outer Wall Liner/Trench
- Inner Berm Liner/Trench
- 4-inch PVC Pipe, Slotted
- Pole-Mount Transformers
- Not Excavated Due To Nearby Pole-Mount Transformers

Scale in Feet

North

West

South

East

56th Street

MW-17

URSW-2

URSW-3

URSW-1

PW-1

MVW-5

MVW-18

MW-17

0 20'
Infiltration Gallery Construction
Infiltration Gallery Construction
Infiltration Gallery Construction
Infiltration Gallery Cross Section – Construction Details
Infiltration Gallery Construction
Well Locations (Groundwater)
Contact:

Tedd Yargeau
Senior Scientist
Department of Toxic Substances Control
9211 Oakdale Avenue
Chatsworth, California 91311
W: (818) 717-6545
M: (818) 212-5340